By Topic

Kurtosis-based super-resolution algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianping Qiao ; School of Communication, Shandong Normal University, Jinan, China ; Ju Liu ; Xiangzeng Meng ; Wan-Chi Siu

A kurtosis-based super-resolution image reconstruction algorithm is proposed in this paper. Firstly, we give the definition of the kurtosis image and analyze its two properties: (i) the kurtosis image is Gaussian noise invariant, and (ii) the absolute value of a kurtosis image becomes smaller as the the image gets smoother. Then we build a constrained absolute local kurtosis maximization function to estimate the high-resolution image by fusing multiple blurred low-resolution images corrupted by intensive white Gaussian noise. The Lagrange multiplier is used to solve the combinatorial optimization problem. Experimental results demonstrate that the proposed method is better than the conventional algorithms in terms of visual inspection and robustness, using both synthetic and real world examples under severe noise background. It has an improvement of 0.5 to 2.0 dB in PSNR over other approaches.

Published in:

2009 IEEE International Conference on Multimedia and Expo

Date of Conference:

June 28 2009-July 3 2009