By Topic

Virtual Machine Scalability on Multi-Core Processors Based Servers for Cloud Computing Workloads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Muhammad Hasan Jamal ; Al-Khawarizmi Inst. of Comput. Sci., Univ. of Eng. & Technol., Lahore, Pakistan ; Abdul Qadeer ; Waqar Mahmood ; Abdul Waheed
more authors

In this paper, we analyze virtual machine (VM) scalability on multi-core systems for compute-, memory-, and network I/O-intensive workloads. The VM scalability evaluation under these three workloads will help cloud users to understand the performance impact of underlying system and network architectures. We demonstrate that VMs on the state-of-the-art multi-core processor based systems scale as well as multiple threads on native SMP kernel for CPU and memory intensive workloads. Intra-VM communication of network I/O intensive TCP message workload has a lower overhead compared to multiple threads when VMs are pinned to specific cores. However, VM scalability is severely limited for such workloads for across-VM communication on a single host due to virtual bridges. For across local and wide area network communication, the network bandwidth is the limiting factor. Unlike previous studies that use workload mixes, we apply a single workload type at a time to clearly attribute VM scalability bottlenecks to system and network architectures or virtualization itself.

Published in:

Networking, Architecture, and Storage, 2009. NAS 2009. IEEE International Conference on

Date of Conference:

9-11 July 2009