By Topic

Human Behavior Analysis Based on a New Motion Descriptor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kaiqi Huang ; Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China ; Shiquan Wang ; Tieniu Tan ; Stephen J. Maybank

Human behavior analysis is an important area of research in computer vision and is also driven by a wide spectrum of applications, such as smart video surveillance and human-computer interface. In this paper, we present a novel approach for human behavior analysis. Two research challenges, motion representation and behavior recognition, are addressed. A novel motion descriptor, which is an improved feature based on optical flow, is proposed for motion representation. Optical flow is improved with a motion filter, and feature fusion with the shape and trajectory information. To recognize the behavior, the support vector machine is employed to train the classifier where the concatenation of histograms is formed as the input features. Experimental results on the Weizmann behavior database and the Institute of Automation, Chinese Academy of Science real-world multiview behavior database demonstrate the robustness and effectiveness of our method.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:19 ,  Issue: 12 )