By Topic

On the Optimality of Motion-Based Particle Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nidhal Bouaynaya ; Dept. of Syst. Eng., Univ. of Arkansas, Little Rock, AR, USA ; Dan Schonfeld

Particle filters have revolutionized object tracking in video sequences. The conventional particle filter, also called the CONDENSATION filter, uses the state transition distribution as the proposal distribution, from which the particles are drawn at each iteration. However, the transition distribution does not take into account the current observations, and thus many particles can be wasted in low likelihood regions. One of the most popular methods to improve the performance of particle filters relied on the motion-based proposal density. Although the motivation for motion-based particle filters could be explained on an intuitive level, up until now a mathematical rationale for the improved performance of motion-based particle filters has not been presented. In this letter, we investigate the performance of motion-based particle filters and provide an analytical justification of their superiority over the classical CONDENSATION filter. We rely on the characterization of the optimal proposal density, which minimizes the variance of the particles'weights. However, this density does not admit an analytical expression, making direct sampling from this optimal distribution impossible. We use the Kullback-Leibler (KL) divergence as a similarity measure between density functions and denote a particle filter as superior if the KL divergence between its proposal and the optimal proposal function is lower. We subsequently prove that under mild conditions on the estimated motion vector, the motion-based particle filter outperforms the CONDENSATION filter, in terms of the KL performance measure. Simulation results are presented to support the theoretical analysis.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:19 ,  Issue: 7 )