By Topic

Transient Chip-Package Cosimulation of Multiscale Structures Using the Laguerre-FDTD Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Myunghyun Ha ; Dept. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Srinivasan, K. ; Swaminathan, M.

Transient simulation using Laguerre polynomials is unconditionally stable and is ideally suited for modeling structures containing both small and large feature sizes. The focus of this paper is on the automation of this technique and its application to chip-package cosimulation. Laguerre finite-difference time-domain (FDTD) requires using the right number of basis coefficients to generate accurate time-domain waveforms. A method for generating the optimal number of basis functions is presented in this paper. Equivalent circuit models of the FDTD grid have been developed. In addition, a method for simulation over a long time period is also presented that enables the extraction of the frequency response both at low and high frequencies. A node numbering scheme in the circuit model of the FDTD grid that is suitable for implementation has been discussed. Results from a chip-package example that shows the scalability of this technique to solve multiscale problems have been presented.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:32 ,  Issue: 4 )