By Topic

Quick Wafer Alignment Using Feedforward Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
HyungTae Kim ; Mechatron. Team, Korea Inst. of Ind. Technol., Chungnam, South Korea ; Kang-Won Lee ; BongKeon Jeon ; ChangSeop Song

This paper proposes a wafer alignment method using a feedforward neural network (FNN). A wafer is placed on a vacuum table and its misalignment is inspected by a frame grabber. The alignment of the wafer is repeatedly corrected by adjusting its kinematic positions until the misalignment becomes zero. The training set is composed of the misalignment and the xy?? compensation. Fifteen sets of misalignment data were measured by the conventional alignment method. The FNN has four normalized inputs as mark locations in the field of vision and three normalized outputs for the kinematic compensation. The macro and micro steps share the FNN by means of a multiplexer (MUX) and a scaler. The training rule was back-propagation (BP). The proposed method was applied to a wafer manufacturing machine and its alignment performance was compared with that of conventional methods. The alignment time was reduced by the FNN model which was especially efficient in the case of macroscopic alignment.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:7 ,  Issue: 2 )