By Topic

Exploring the Design Space of Symbolic Music Genre Classification Using Data Mining Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kofod, C. ; Electron. Dept., Aalborg Univ., Esbjerg, Denmark ; Ortiz-Arroyo, D.

This paper describes a method based on data mining techniques to classify MIDI music files into music genres. Our method relies on extracting high level symbolic features from MIDI files. We explore the effect of combining several data mining preprocessing stages to reduce data processing complexity and classification execution time. Additionally, we employ a variety of probabilistic classifiers and ensembles. We compare the results produced by our best classifier with those obtained by more complex state of the art classifiers. Our experimental results indicate that our system constructed with the best performing combination of data mining preprocessing components together with a Naive Bayes-based classifier is capable of outperforming other more complex ensembles of classifiers.

Published in:

Computational Intelligence for Modelling Control & Automation, 2008 International Conference on

Date of Conference:

10-12 Dec. 2008