By Topic

An adaptive image segmentation method with visual nonlinearity characteristics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhang Tianxu ; Inst. of Pattern Recognition & Artificial Intelligence, Huazhong Univ. of Sci. & Technol., Wuhan, China ; Peng Jiaxiong ; Li Zongjie

This correspondence is concerned with a method for image segmentation on the visual principle. The inconsistency between the conventional discriminating criterion and the human vision mechanism in perceiving an object and its background is analyzed and an improved discriminating criterion with visual nonlinearity is defined. A new model and an algorithm for image segmentation calculation are proposed based on the spatially adaptive principle of human vision and the relevant hypotheses about object recognition. This is a two-stage process of image segmentation. First, initial segmentation is realized with the bottom-up segmenting algorithm, followed by the goal-driven segmenting algorithm to improve the segmentation results concerning certain regions of interest. Experimental results show that, compared with some conventional and gradient-based segmenting methods, the new method has the excellent performance of extracting small objects from the images of natural scenes with a complicated background

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:26 ,  Issue: 4 )