By Topic

Communication pattern anomaly detection in process control systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alfonso Valdes ; SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA ; Steven Cheung

Digital control systems are increasingly being deployed in critical infrastructure such as electric power generation and distribution. To protect these process control systems, we present a learning-based approach for detecting anomalous network traffic patterns. These anomalous patterns may correspond to attack activities such as malware propagation or denial of service. Misuse detection, the mainstream intrusion detection approach used today, typically uses attack signatures to detect known, specific attacks, but may not be effective against new or variations of known attacks. Our approach, which does not rely on attack-specific knowledge, may provide a complementary detection capability for protecting digital control systems.

Published in:

Technologies for Homeland Security, 2009. HST '09. IEEE Conference on

Date of Conference:

11-12 May 2009