By Topic

Alerting the drivers about road signs with poor visual saliency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Simon, L. ; Lab. for Road Oper., Perception, Simulation & Simulators, Univ. Paris Est, Paris, France ; Tarel, J.-P. ; Bremond, R.

This paper proposes an improvement of advanced driver assistance system based on saliency estimation of road signs. After a road sign detection stage, its saliency is estimated using a SVM learning. A model of visual saliency linking the size of an object and a size-independent saliency is proposed. An eye tracking experiment in context close to driving proves that this computational evaluation of the saliency fits well with human perception, and demonstrates the applicability of the proposed estimator for improved ADAS.

Published in:

Intelligent Vehicles Symposium, 2009 IEEE

Date of Conference:

3-5 June 2009