By Topic

Distributed Coordination of Networked Fractional-Order Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yongcan Cao ; Department of Electrical and Computer Engineering, Utah State University, Logan, UT, USA ; Yan Li ; Wei Ren ; YangQuan Chen

This paper studies the distributed coordination of networked fractional-order systems over a directed interaction graph. A general fractional-order coordination model is introduced by summarizing three different cases: 1) fractional-order agent dynamics with integer-order coordination algorithms; 2) fractional-order agent dynamics with fractional-order coordination algorithms; and 3) integer-order agent dynamics with fractional-order coordination algorithms. We show sufficient conditions on the interaction graph and the fractional order such that coordination can be achieved using the general model. The coordination equilibrium is also explicitly given. In addition, we characterize the relationship between the number of agents and the fractional order to ensure coordination. Furthermore, we compare the convergence speed of coordination for fractional-order systems with that for integer-order systems. It is shown that the convergence speed of the fractional-order coordination algorithms can be improved by varying the fractional orders with time. Finally, simulation results are presented as a proof of concept.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:40 ,  Issue: 2 )