Cart (Loading....) | Create Account
Close category search window
 

Detection in correlated impulsive noise channels using Frequency-Response-Shaped adaptive filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahmad, M.S. ; Elektrik ve Elektron. Muhendisligi Bolumu, Dogu Akdeniz Univ., Gazimagusa, Turkey ; Hocanin, A. ; Kukrer, O.

This paper investigates the performance of an adaptive filter, (Frequency-Response-Shaped Least Mean Square (FRS-LMS) algorithm) for canceling impulsive components when the nominal process (or background noise) is a correlated, possibly nonstationary, Gaussian process. The performance of the algorithm in estimating a BPSK signal corrupted by a white and correlated impulsive noise is investigated. The algorithm does not require a priori knowledge about the noise parameters, but requires knowledge of the signal frequency which can easily be estimated from its periodogram. The performance of the FRS-LMS is compared to that of the conventional LMS, the leaky-LMS (L-LMS), and the modified leaky LMS (ML-LMS) algorithms in terms of mean square error (MSE), convergence speed and bit-error-rate (BER). The results indicate that the FRS-LMS algorithm performs approximately twice as better than the LMS and L-LMS algorithms in white impulsive noise environments, while the ML-LMS algorithm fails to converge. Also, it provides superior MSE and BER performance in correlated impulsive noise environments, while the other algorithms fail to converge. The performance gain is due to the frequency shaping and the outlier reduction properties of the algorithm.

Published in:

Signal Processing and Communications Applications Conference, 2009. SIU 2009. IEEE 17th

Date of Conference:

9-11 April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.