By Topic

Dipole source reconstruction of brain signals by using particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yasar Kemal Alp ; Elektrik Elektronik Mühendisli¿i Bölümü, Bilkent Üniversitesi, Ankara, Turkey ; Orhan Arikan ; Sirel Karakas

Resolving the sources of neural activity is of prime importance in the analysis of event related potentials (ERP). These sources can be modeled as effective dipoles. Identifying the dipole parameters from the measured multichannel data is called the EEG inverse problem. In this work, we propose a new method for the solution of EEG inverse problem. Our method uses particle swarm optimization (PSO) technique for optimally choosing the dipole parameters. Simulations on synthetic data sets show that our method well localizes the dipoles into their actual locations. In the real data sets, since the actual dipole parameters aren't known, the fit error between the measured data and the reconstructed data is minimized. It has been observed that our method reduces this error to the noise level by localizing only a few dipoles in the brain.

Published in:

2009 IEEE 17th Signal Processing and Communications Applications Conference

Date of Conference:

9-11 April 2009