Cart (Loading....) | Create Account
Close category search window
 

Optimization of the inertial and acceleration characteristics of manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khatib, O. ; Dept. of Comput. Sci., Stanford Univ., CA, USA ; Bowling, A.

Investigates the problem of manipulator design for increased dynamic performance. Optimization techniques are used to determine the design parameters which improve manipulator performance. The dynamic performance of a manipulator is characterized by the inertial and acceleration properties of the end-effector. Our study of inertial and acceleration properties have provided separate descriptions of the characteristics associated with linear and angular motions. This allows a more physically meaningful interpretation of these properties and provides simple models for their analysis. The article presents these models, discusses the design optimization criteria, and formulates the optimization problem. The approach is illustrated in the selection of design parameters of a parallel mechanism

Published in:

Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on  (Volume:4 )

Date of Conference:

22-28 Apr 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.