By Topic

Infinite-dimensional multilayer perceptrons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kuzuoglu, Mustafa ; Dept. of Electr. & Electron. Eng., Middle East Tech. Univ., Ankara, Turkey ; Leblebicioglu, Kemal

In this paper a new multilayer perceptron (MLP) structure is introduced to simulate nonlinear transformations on infinite-dimensional function spaces. This extension is achieved by replacing discrete neurons by a continuum of neurons, summations by integrations and weight matrices by kernels of integral transforms. Variational techniques have been employed for the analysis and training of the infinite-dimensional MLP (IDMLP). The training problem of IDMLP is solved by the Lagrange multiplier technique yielding the coupled state and adjoint state integro-difference equations. A steepest descent-like algorithm is used to construct the required kernel and threshold functions. Finally, some results are presented to show the performance of the new IDMLP

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 4 )