By Topic

A Tree-Based Multi-class SVM Classifier for Digital Library Document

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yuguo Wang ; Dept. of Comput. Sci., Jilin Bus. & Technol. Coll., Changchun

In this paper, we present a new method of using support vector machine (SVM) for multiclass classification. In our method, we use a tree based SVM classifier for classification. Compared with the other SVM multi-class classification methods in literature (i.e. one-against-one, DAGSVM), our proposed SVM tree classifier is more efficient in both training/classification. Our new SVM tree classifier requires o(n) SVM training during the training stage and O(log(n)) SVM testing during the test stage, while other methods require o(n2) or at best o(n) SVM training during the training and O(n2) or at best O(n) SVM testing during testing. Experimental results on digital library document classification demonstrate that our methods is not only significantly more efficient but also achieves the similar precision of classification.

Published in:

MultiMedia and Information Technology, 2008. MMIT '08. International Conference on

Date of Conference:

30-31 Dec. 2008