By Topic

Mining Individual Life Pattern Based on Location History

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yang Ye ; Dept. Of Comput. Sci. & Technol., Tsinghua Univ. Beijing, Beijing ; Yu Zheng ; Yukun Chen ; Jianhua Feng
more authors

The increasing pervasiveness of location-acquisition technologies (GPS, GSM networks, etc.) enables people to conveniently log their location history into spatial-temporal data, thus giving rise to the necessity as well as opportunity to discovery valuable knowledge from this type of data. In this paper, we propose the novel notion of individual life pattern, which captures individual's general life style and regularity. Concretely, we propose the life pattern normal form (the LP-normal form) to formally describe which kind of life regularity can be discovered from location history; then we propose the LP-Mine framework to effectively retrieve life patterns from raw individual GPS data. Our definition of life pattern focuses on significant places of individual life and considers diverse properties to combine the significant places. LP-Mine is comprised of two phases: the modelling phase and the mining phase. The modelling phase pre-processes GPS data into an available format as the input of the mining phase. The mining phase applies separate strategies to discover different types of pattern. Finally, we conduct extensive experiments using GPS data collected by volunteers in the real world to verify the effectiveness of the framework.

Published in:

2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware

Date of Conference:

18-20 May 2009