By Topic

Study of 15µm pitch solder microbumps for 3D IC integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Aibin Yu ; Inst. of Microelectron., Agency for Sci., Technol. & Res., Singapore ; Lau, J.H. ; Soon Wee Ho ; Kumar, A.
more authors

Developments of ultra fine pitch and high density solder microbumps and assembly process for low cost 3D stacking technologies are discussed in this paper. The solder microbumps developed in this work consist of Cu and Sn, which are electroplated in sequential with total thickness of 10 mum; The under bump metallurgy (UBM) pads used here is electroless plated nickel and immersion gold (ENIG) with thickness of 2 mum. Accordingly, joining of the two Si chips can be conducted by joining CuSn solder microbumps to ENIG UBM pads or CuSn solder microbumps to CuSn solder microbumps. The first joining can only be done with chip to chip assembly whereas the second joining has the potential for chip to wafer assembly. Assembly of the Si chips is conducted with the FC150 flip chip bonder at different temperatures, times, and pressures and the optimized bonding conditions are obtained. After assembly, underfill process is carried out to fill the gap and a void free underfilling is achieved using an underfill material with fine filler size.

Published in:

Electronic Components and Technology Conference, 2009. ECTC 2009. 59th

Date of Conference:

26-29 May 2009