By Topic

Capacity Maximization for OFDM Two-Hop Relay System With Separate Power Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wenyi Wang ; Tianjin Key Lab. for Adv. Signal Process., Civil Aviation Univ. of China, Tianjin, China ; Renbiao Wu

The combination of a multihop relay system and orthogonal frequency-division multiplexing (OFDM) modulation is a promising way to increase the capacity and coverage area. For the OFDM two-hop relay system with separate power constraints, joint subcarrier matching and power allocation is considered in this paper, which uses the ldquodecode-and-forwardrdquo relay strategy. The aforementioned problem can be formulated as a mixed binary integer programming problem, which is prohibitive when trying to find the global optimum. By separating the subcarrier matching and the power allocation, the optimal scheme, i.e., the optimal joint subcarrier matching and power allocation, is presented in this paper. After that, a suboptimal scheme with less complexity is also proposed, which can also be used to better understand the effects of power allocation. Simulation results show that the capacity of the optimal scheme is almost equivalent to the upper bound of the system capacity, and the capacity of the suboptimal scheme is close to that of the optimal scheme. In addition, simulation results also show that the one-to-one subcarrier matching is almost optimal, although it simplifies the system architecture.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:58 ,  Issue: 9 )