By Topic

Hidden Markov Models With Stick-Breaking Priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Paisley, J. ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Carin, L.

The number of states in a hidden Markov model (HMM) is an important parameter that has a critical impact on the inferred model. Bayesian approaches to addressing this issue include the nonparametric hierarchical Dirichlet process, which does not extend to a variational Bayesian (VB) solution. We present a fully conjugate, Bayesian approach to determining the number of states in a HMM, which does have a variational solution. The infinite-state HMM presented here utilizes a stick-breaking construction for each row of the state transition matrix, which allows for a sparse utilization of the same subset of observation parameters by all states. In addition to our variational solution, we discuss retrospective and collapsed Gibbs sampling methods for MCMC inference. We demonstrate our model on a music recommendation problem containing 2250 pieces of music from the classical, jazz, and rock genres.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 10 )