By Topic

Testing for trustworthiness in scientific software

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hook, D. ; Queen''s Univ., Kingston, ON ; Kelly, Diane

Two factors contribute to the difficulty of testing scientific software. One is the lack of testing oracles - a means of comparing software output to expected and correct results. The second is the large number of tests required when following any standard testing technique described in the software engineering literature. Due to the lack of oracles, scientists use judgment based on experience to assess trustworthiness, rather than correctness, of their software. This is an approach well established for assessing scientific models. However, the problem of assessing software is more complex, exacerbated by the problem of code faults. This highlights the need for effective and efficient testing for code faults in scientific software. Our current research suggests that a small number of well chosen tests may reveal a high percentage of code faults in scientific software and allow scientists to increase their trust.

Published in:

Software Engineering for Computational Science and Engineering, 2009. SECSE '09. ICSE Workshop on

Date of Conference:

23-23 May 2009