Cart (Loading....) | Create Account
Close category search window
 

Neurocontrollers designed by a genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The paper discusses problems existing in neural network design using mathematically guided training methods. It presents a genetic algorithm based design technique to train the network, which overcomes all these problems. The paper also presents suitability conditions for using the genetic algorithm based design methods and develops, under these conditions, direct neurocontrollers with a novel structure inspired by proportional plus derivative control. Techniques are also developed to select the architectures in the same process of parameter training. The proposed methods are validated by several examples, including one with plant transport delay

Published in:

Genetic Algorithms in Engineering Systems: Innovations and Applications, 1995. GALESIA. First International Conference on (Conf. Publ. No. 414)

Date of Conference:

12-14 Sep 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.