By Topic

Multiprocessor scheduling using a problem-space genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
I. Ahmad ; Kuwait Univ., Safat, Kuwait ; M. K. Dhodhi

In this paper, we present a technique based on the problem-space genetic algorithm (PSGA) for the static scheduling of directed acyclic graphs onto homogeneous multiprocessor systems to reduce the response-time. The PSGA based approach combines genetic algorithms, with a list scheduling heuristic to search a large solution space efficiently and effectively. Comparison of results with the genetic algorithm based scheduling technique for the Stanford manipulator and the Elbow manipulator examples shows a significant improvement in the response-time

Published in:

Genetic Algorithms in Engineering Systems: Innovations and Applications, 1995. GALESIA. First International Conference on (Conf. Publ. No. 414)

Date of Conference:

12-14 Sep 1995