By Topic

Macro-Agent Evolutionary Model for decomposable function optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jing Liu ; Inst. of Intell. Inf. Process., Xidian Univ., Xi''an ; Weicai Zhong ; Licheng Jiao

This paper analyzes the numerical optimization problems from the viewpoint of multiagent systems. First, Macro-Agent Evolutionary Model (MacroAEM) is proposed with the intrinsic properties of decomposable functions in mind. In this model, a subfunction forms a macro-agent, and 3 new behaviors, namely competition, cooperation, and selfishness, are developed for macro-agents to optimizing objective functions. Second, MacroAEM model is integrated with multiagent genetic algorithm, which results a new algorithm, Hierarchical MultiAgent Genetic Algorithm (HMAGA). The convergence of HMAGA is analyzed theoretically and the results show that HMAGA converges to the global optima. In experiments, HMAGA is applied to a kind of complicated decomposable function, namely Rosenbrock function. The results show that HMAGA achieves a good performance, especially for the high-dimensional functions. In addition, the analyses on time complexity demonstrate that HMAGA has a good scalability.

Published in:

Evolutionary Computation, 2009. CEC '09. IEEE Congress on

Date of Conference:

18-21 May 2009