By Topic

How robot morphology and training order affect the learning of multiple behaviors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Auerbach, J. ; Dept. of Comput. Sci., Univ. of Vermont, Burlington, VT ; Bongard, J.C.

Automatically synthesizing behaviors for robots with articulated bodies poses a number of challenges beyond those encountered when generating behaviors for simpler agents. One such challenge is how to optimize a controller that can orchestrate dynamic motion of different parts of the body at different times. This paper presents an incremental shaping method that addresses this challenge: it trains a controller to both coordinate a robot's leg motions to achieve directed locomotion toward an object, and then coordinate gripper motion to achieve lifting once the object is reached. It is shown that success is dependent on the order in which these behaviors are learned, and that despite the fact that one robot can master these behaviors better than another with a different morphology, this learning order is invariant across the two robot morphologies investigated here. This suggests that aspects of the task environment, learning algorithm or the controller dictate learning order more than the choice of morphology.

Published in:

Evolutionary Computation, 2009. CEC '09. IEEE Congress on

Date of Conference:

18-21 May 2009