By Topic

Finite element modelling of magnetic compression using coupled electromagnetic-structural codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

A link between the electromagnetic code, MEGA, and the structural code, DYNA3D has been developed. Although the primary use of this is for modelling of railgun components, it has previously been applied to a small experimental coilgun at Bath. The performance of coilguns is very dependent on projectile material conductivity, and so high purity aluminium was investigated. However, due to its low strength, it is crushed significantly by magnetic compression in the gun. Although impractical as a real projectile material, this provides useful benchmark experimental data on high strain rate plastic deformation caused by magnetic forces. This setup is equivalent to a large scale version of the classic jumping ring experiment, where the ring jumps with an acceleration of 40 kG

Published in:

IEEE Transactions on Magnetics  (Volume:32 ,  Issue: 3 )