By Topic

Modeling the hysteresis of a scanning probe microscope

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Dirscherl, Kai ; Danish Institute of Fundamental Metrology, DK-2800 Lyngby, Denmark ; Garnæs, Jørgen ; Nielsen, L. ; Jøgensen, Jan Friis
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.591249 

Most scanning probe microscopes use piezoelectric actuators in open loop configurations. Therefore a major problem related to these instruments is the image distortion due to the hysteresis effect of the piezo. In order to eliminate the distortions, cost effective software control based on a model for hysteresis can be applied to the scanner. We describe a new rate-independent model for the hysteresis of a piezo scanner. Two reference standards were used to determine the accuracy of the model; a one-dimensional grating with a period of 3.0 μm and a two-dimensional grating with 200 nm pitch. The structures were scanned for different scan ranges varying from 5 V peak to peak to 440 V peak to peak, so that 99% of the scanners’ full motion range was covered. A least-squares fit of the experiments to the hysteresis model provided standard deviations per scan range of around 0.2%. This represents an uncertainty of 1 pixel. Since our model is based on a differential equation, it is flexible even to simulate arbitrary experimental conditions such as a sudden change in the offset. © 2000 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:18 ,  Issue: 2 )