By Topic

Discrimination of Breast Tumors in Ultrasonic Images Using an Ensemble Classifier Based on the AdaBoost Algorithm With Feature Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Atsushi Takemura ; Inst. of Symbiotic Sci. & Technol., Tokyo Univ. of Agric. & Technol., Koganei, Japan ; Akinobu Shimizu ; Kazuhiko Hamamoto

This paper proposes a novel algorithm to estimate a log-compressed K distribution parameter and presents an algorithm to discriminate breast tumors in ultrasonic images. We computed a total of 208 features for discrimination, including those based on a parameter of a log-compressed K-distribution, which quantifies the homogeneity of the echo pattern in the tumor, but is influenced by compression parameters in the ultrasonic device. The proposed algorithm estimates the parameter of the log-compressed K-distribution in a manner free from this influence. To quantify irregularities in tumor shape, pattern-spectrum-based features were newly developed in this paper. The discrimination process uses an ensemble classifier trained by a multiclass AdaBoost learning algorithm (AdaBoost.M2), combined with a sequential feature-selection process. A 10-fold cross-validation test validated the performance, and the results were compared with those of a Mahalanobis distance-based classifier and a multiclass support vector machine. A total of 200 carcinomas, 50 fibroadenomas, and 50 cysts were used in the experiments. This paper demonstrates that the combination of a classifier trained by AdaBoost.M2 and features based on the estimated parameter of a log-compressed K-distribution, as well as those of the pattern spectrum, are useful for the discrimination of tumors.

Published in:

IEEE Transactions on Medical Imaging  (Volume:29 ,  Issue: 3 )