Cart (Loading....) | Create Account
Close category search window
 

Spatiotemporal Saliency in Dynamic Scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mahadevan, V. ; Dept. of Electr. & Comput. Eng., Univ. of California, San Diego, La Jolla, CA, USA ; Vasconcelos, N.

A spatiotemporal saliency algorithm based on a center-surround framework is proposed. The algorithm is inspired by biological mechanisms of motion-based perceptual grouping and extends a discriminant formulation of center-surround saliency previously proposed for static imagery. Under this formulation, the saliency of a location is equated to the power of a predefined set of features to discriminate between the visual stimuli in a center and a surround window, centered at that location. The features are spatiotemporal video patches and are modeled as dynamic textures, to achieve a principled joint characterization of the spatial and temporal components of saliency. The combination of discriminant center-surround saliency with the modeling power of dynamic textures yields a robust, versatile, and fully unsupervised spatiotemporal saliency algorithm, applicable to scenes with highly dynamic backgrounds and moving cameras. The related problem of background subtraction is treated as the complement of saliency detection, by classifying nonsalient (with respect to appearance and motion dynamics) points in the visual field as background. The algorithm is tested for background subtraction on challenging sequences, and shown to substantially outperform various state-of-the-art techniques. Quantitatively, its average error rate is almost half that of the closest competitor.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 1 )

Date of Publication:

Jan. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.