By Topic

Blind sparse source separation for unknown number of sources using Gaussian mixture model fitting with Dirichlet prior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shoko Araki ; NTT Communication Science Laboratories, NTT Corporation, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan ; Tomohiro Nakatani ; Hiroshi Sawada ; Shoji Makino

In this paper, we propose a novel sparse source separation method that can be applied even if the number of sources is unknown. Recently, many sparse source separation approaches with time-frequency masks have been proposed. However, most of these approaches require information on the number of sources in advance. In our proposed method, we model the histogram of the estimated direction of arrival (DOA) with a Gaussian mixture model (GMM) with a Dirichlet prior. Then we estimate the model parameters by using the maximum a posteriori estimation based on the EM algorithm. In order to avoid one cluster being modeled by two or more Gaussians, we utilize a sparse distribution modeled by the Dirichlet distributions as the prior of the GMM mixture weight. By using this prior, without any specific model selection process, our proposed method can estimate the number of sources and time-frequency masks simultaneously. Experimental results show the performance of our proposed method.

Published in:

2009 IEEE International Conference on Acoustics, Speech and Signal Processing

Date of Conference:

19-24 April 2009