By Topic

Maze Routing Steiner Trees With Delay Versus Wire Length Tradeoff

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Renato Hentschke ; Inst. de Inf., Univ. Fed. do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil ; Jaganathan Narasimhan ; Marcelo Johann ; Ricardo Reis

In this paper, we address the problem of generating good topologies of rectilinear Steiner trees using path search algorithms. Various techniques have been applied in order to achieve acceptable run times on a maze router that builds Steiner trees. A biasing technique proposed for wire length improvement, produces trees that are within 2% from optimal topologies in average. By introducing a sharing factor and a path-length factor we show how to trade-off wire length for delay. Experimental results show that our algorithm generates topologies with better delay compared to state of the art heuristics for Steiner trees, such as AHHK (from 26% to 40%) and P-Trees (from 1% to 30% and from 6% to 21% in the presence of blockages) while keeping the properties of a routing algorithm. An important motivation for this work lies in the fact that it can be used for estimation in the early stages as well as for actual routing, thereby improving the convergence and timing closure of the design significantly. We also provide some valuable theoretical background and insights on delay optimization and on how it relates to our maze router implementation.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:17 ,  Issue: 8 )