By Topic

An efficient algorithm for deriving logic functions of asynchronous circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Miyamoto, T. ; Dept. of Electr. Eng., Osaka Univ., Japan ; Kumagai, S.

Signal Transition Graphs (STGs) are Petri nets, which were introduced to represent a behavior of asynchronous circuits. To derive logic functions from an STG, the reachability graph should be constructed. In the verification of STGs some method based on Occurrence nets (OCN) and its prefix, called unfolding, has been proposed. OCNs can represent both causality and concurrency between two nodes by net structure. In this paper, we propose a method to derive a logic function by generating substate space of a given STG using the structural properties of OCN. The proposed method can be seen as a parallel algorithm for deriving a logic function

Published in:

Advanced Research in Asynchronous Circuits and Systems, 1996. Proceedings., Second International Symposium on

Date of Conference:

18-21 Mar 1996