By Topic

Validity-guided (re)clustering with applications to image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Bensaid, A.M. ; Div. of Comput. Sci. & Math., Al Akhawayn Univ. Ifrane, Morocco ; Hall, L.O. ; Bezdek, J.C. ; Clarke, Laurence P.
more authors

When clustering algorithms are applied to image segmentation, the goal is to solve a classification problem. However, these algorithms do not directly optimize classification duality. As a result, they are susceptible to two problems: 1) the criterion they optimize may not be a good estimator of “true” classification quality, and 2) they often admit many (suboptimal) solutions. This paper introduces an algorithm that uses cluster validity to mitigate problems 1 and 2. The validity-guided (re)clustering (VGC) algorithm uses cluster-validity information to guide a fuzzy (re)clustering process toward better solutions. It starts with a partition generated by a soft or fuzzy clustering algorithm. Then it iteratively alters the partition by applying (novel) split-and-merge operations to the clusters. Partition modifications that result in improved partition validity are retained. VGC is tested on both synthetic and real-world data. For magnetic resonance image (MRI) segmentation, evaluations by radiologists show that VGC outperforms the (unsupervised) fuzzy c-means algorithm, and VGC's performance approaches that of the (supervised) k-nearest-neighbors algorithm

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:4 ,  Issue: 2 )