By Topic

Role of steady state fluorocarbon films in the etching of silicon dioxide using CHF3 in an inductively coupled plasma reactor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Rueger, N.R. ; Department of Physics, State University of New York at Albany, New York 12222 ; Beulens, J.J. ; Schaepkens, M. ; Doemling, M.F.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

It has been found that in the etching of SiO2 using CHF3 in an inductively coupled plasma reactor of the planarized coil design, a thin steady state fluorocarbon film can play an important role in determining the rate of etching. This etching is encountered as the amount of bias power used in the SiO2 etching process is increased, and a transition from fluorocarbon film growth on the SiO2 to an oxide etching rate which is consistent with reactive sputtering theory is made. The observed presence of an intermediate region where etching occurs, although a steady state fluorocarbon film suppresses the etch rate from that expected for a reactive sputtering process, has been referred to as the fluorocarbon suppression regime. This work demonstrates the role of the steady state fluorocarbon film present on silicon dioxide during etching within the fluorocarbon suppression regime. X-ray photoelectron spectroscopy studies of the surfaces of partially etched SiO2 have shown a thinning of this film with increasing rf bias power, as well as a decrease in the fluorine content of the surface film as a function of increasing rf bias power. We have found that slight variations in the film thickness, on the order of 1 nm, can result in large variations, approximately 400 nm/min, in the silicon dioxide etch rate. The presence of the film within the suppression regime appears to be due to the overwhelming polymerization ability of high density plasmas, coupled with the inability of the oxide to react sufficiently with the total fluorocarbon particle flux in order to completely remove this film. For this reason these types of reactors exhibit a regime where oxide etching occurs in the presence of a surface film. The film appears to be directly responsible for the observed suppression of the oxide etch rate from that expected for a reactiv- - e sputtering process by dissipating the bombarding ion energy, and thereby suppressing the energy flux arriving at the oxide surface. © 1997 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:15 ,  Issue: 4 )