Cart (Loading....) | Create Account
Close category search window

Effects of atomic hydrogen on the selective area growth of Si and Si1-xGex thin films on Si and SiO2 surfaces: Inhibition, nucleation, and growth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schroeder, T.W. ; School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 ; Lam, A.M. ; Ma, P.F. ; Engstrom, J.R.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Supersonic molecular beam techniques have been used to study the nucleation of Si and Si1-xGex thin films on Si and SiO2 surfaces, where Si2H6 and GeH4 have been used as sources. A particular emphasis of this study has been an examination of the effects of a coincident flux of atomic hydrogen. The time associated with formation of stable islands of Si or Si1-xGex on SiO2 surfaces—the incubation time—has been found to depend strongly on the kinetic energy of the incident molecular precursors (Si2H6 and GeH4) and the substrate temperature. After coalescence, thin film morphology has been found to depend primarily on substrate temperature, with smoother films being grown at substrate temperatures below 600 °C. Introduction of a coincident flux of atomic hydrogen has a large effect on the nucleation and growth process. First, the incubation time in the presence of atomic hydrogen has been found to increase, especially at substrate temperatures below 630 °C, suggesting that hydrogen atoms adsorbed on Si-like sites on SiO2 can effectively block nucleation of Si. Unfortunately, in terms of promoting selective area growth, coincident atomic hydrogen also decreases the rate of epitaxial growth rate, essentially offsetting any increase in the incubation time for growth on SiO2. Concerning Si1-x- - Gex growth, the introduction of GeH4 produces substantial changes in both thin film morphology and the rate nucleation of poly-Si1-xGex on SiO2. Briefly, the addition of Ge increases the incubation time, while it lessens the effect of coincident hydrogen on the incubation time. Finally, a comparison of the maximum island density, the time to reach this density, and the steady-state polycrystalline growth rate strongly suggests that all thin films [Si, Si1-xGex, both with and without H(g)] nucleate at special sites on the SiO2 surface, and grow primarily via direct deposition of adatoms on pre-existing islands. © 2004 American Vacuum Society.

Published in:

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films  (Volume:22 ,  Issue: 3 )

Date of Publication:

May 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.