Cart (Loading....) | Create Account
Close category search window

Luminescent solar concentrators: Nanorods and raytrace modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Bose, R. ; Department of Physics, Imperial College London, SW7 2BW, UK ; Farrell, D.J. ; Chatten, A.J. ; Pravettoni, M.
more authors

Nanorods are a novel and promising component for luminescent solar concentrators (LSCs). In particular, their spectra suggest reduced re-absorption losses. We report the incorporation of core-shell nanorods in homogeneous and thin film LSCs. The rods in the solid host appear to retain their spectral features compared to their dissolved state. Short-circuit current measurements with a calibrated solar cell have been compared with the computational simulation of the LSCs. Our raytrace model was applied to fit the fundamental emission spectrum and extract the quantum efficiency (QE) of the nanorods in the concentrators. In the case of the homogeneous LSC, the extracted QE was (67±4)%, which is in good agreement with the quoted value of about 70% for rods in solution. The thin film samples showed noticeably worse performance, which was attributed to possible agglomeration of rods and to macroscopic defects in the film. Finally, the raytrace model was applied to compare the self-absorption between a typical quantum dot concentrator and a nanorod concentrator. The result supported the argument that nanorods exhibit a smaller spectral overlap and consequently less re-absorption losses.

Published in:

Photovoltaic Specialists Conference, 2008. PVSC '08. 33rd IEEE

Date of Conference:

11-16 May 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.