By Topic

A visual canonical adjacency matrix for graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Graph data mining algorithms rely on graph canonical forms to compare different graph structures. These canonical form definitions depend on node and edge labels. In this paper, we introduce a unique canonical visual matrix representation that only depends on a graph's topological information, so that two structurally identical graphs will have exactly the same visual adjacency matrix representation. In this canonical matrix, nodes are ordered based on a breadth-first search spanning tree. Special rules and filters are designed to guarantee the uniqueness of an arrangement. Such a unique matrix representation provides persistence and a stability which can be used and harnessed in visualization, especially for data exploration and studies.

Published in:

Visualization Symposium, 2009. PacificVis '09. IEEE Pacific

Date of Conference:

20-23 April 2009