Cart (Loading....) | Create Account
Close category search window
 

An application of embedology to spatio-temporal pattern recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stright, J.R. ; Dept. of Electr. & Comput. Eng., Air Force Inst. of Technol., Wright-Patterson AFB, OH, USA ; Rogers, S.K. ; Quinn, D.W. ; Fielding, K.H.

The theory of embedded time series is shown applicable for determining a reasonable lower bound on the length of test sequence required for accurate classification of moving objects. Sequentially recorded feature vectors of a moving object form a training trajectory in feature space. Each of the sequences of feature vector components is a time series, and under certain conditions, each of these time series has approximately the same fractal dimension. The embedding theorem may be applied to this fractal dimension to establish a sufficient number of observations to determine the feature space trajectory of the object. It is argued that this number is a reasonable lower bound on test sequence length for use in object classification. Experiments with data corresponding to five military vehicles (observed following a projected Lorenz trajectory on a viewing sphere) show that this bound is indeed adequate.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:32 ,  Issue: 2 )

Date of Publication:

April 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.