By Topic

SNR-based multipath error correction for GPS differential phase

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Axelrad, P. ; Center for Astrodynamics Res., Colorado Univ., Boulder, CO, USA ; Comp, C.J. ; Macdoran, P.F.

Carrier phase multipath is currently the limiting error source for high precision Global Positioning System (GPS) applications such as attitude determination and short baseline surveying. Multipath is the corruption of the direct GPS signal by one or more signals reflected from the local surroundings. Multipath reflections affect both the carrier phase measured by the receiver and signal-to-noise ratio (SNR). A technique is described which uses the SNR information to correct multipath errors in differential phase observations. The potential of the technique to reduce multipath to almost the level of receiver noise was demonstrated in simulations. The effectiveness on real data was demonstrated with controlled static experiments. Small errors remained, predominantly from high frequency multipath. The low frequency multipath was virtually eliminated. The remaining high frequency receiver noise can be easily removed by smoothing or Kalman filtering.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:32 ,  Issue: 2 )