Cart (Loading....) | Create Account
Close category search window
 

Approximations of the Planck Function for Models and Measurements Into the Submillimeter Range

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lipton, A.E. ; Atmos. & Environ. Res., Inc., Lexington, MA ; Moncet, J. ; Uymin, G.

A brightness temperature is defined as a linear function of the Planck radiance, with the linear coefficients optimized to minimize the difference between the brightness temperature and the physical temperatures of atmospheric and terrestrial emitters. Radiative transfer (RT) calculations can be accelerated by formulating the integration in terms of this brightness temperature while producing output in terms of radiance or brightness temperature. Approximation errors are < 0.012 K for RT model applications up to 400 GHz, for any upward, downward, or limb-view geometry, which is about an order of magnitude smaller than for the common brightness temperature derived from a second-order expansion of the Planck function. When products of an RT model that uses this optimized Planck approximation are compared with measurements and the measured radiance is high (equivalent brightness temperature is >170 K), it can be advantageous to apply a complementary approximation to the measurements to benefit from error compensation between the model and the measurements. Alternatively, error compensation can be obtained if the calibration and RT equations use consistent brightness temperature approximations.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:6 ,  Issue: 3 )

Date of Publication:

July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.