By Topic

Validity of the Additive White Gaussian Noise Model for Quasi-Linear Long-Haul Return-to-Zero Optical Fiber Communications Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zweck, J. ; Dept. of Math. & Stat., Univ. of Maryland Baltimore County, Baltimore, MD, USA ; Menyuk, C.R.

In this paper, we study the validity and limitations of the additive white Gaussian noise (AWGN) model in quasi-linear, long-haul, return-to-zero, direct-detection optical fiber communications systems. Our approach is to compare bit-error ratios (BERs) computed using the additive white Gaussian noise method to those obtained using standard and multicanonical Monte Carlo (MMC) simulations and to a noise-linearization method, referred to as the noise covariance matrix (NCM) method. We show that the AWGN method provides a very good approximation to the actual system BER for power levels and dispersion profiles that are used in typical modern-day quasi-linear systems. For example, the BER obtained using the AWGN method is within a factor of 4 of the actual system BER computed using MMC simulations for a realistic 10 Gb/s, 6000 km system based on dispersion-shifted fiber in which the peak signal power at the transmitter is 1 mW and the absolute residual dispersion at the receiver is less than 200 ps/nm. However, when the peak power is increased to about 4 mW, or the average map dispersion is zero and the absolute residual dispersion exceeds 200 ps/nm, the AWGN and NCM methods may simultaneously breakdown due to a combination of nonlinear signal-noise and noise-noise interactions during transmission. In addition, for a 5000 km system based on low-nonlinearity D + and D - fiber with an average map dispersion that is 4% of the dispersion variation within the map, and that operates at a peak power of 5 mW, we find that the BERs obtained using the AWGN and NCM methods are about 500 times smaller than the actual system BER computed using MMC simulations.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 16 )