Cart (Loading....) | Create Account
Close category search window
 

Least squares range difference location

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schmidt, R. ; Advent Syst. Inc., Mountain View, CA, USA

An array of n sensors at known locations receives the signal from an emitter whose location is desired. By measuring the time differences of arrival (TDOAs) between pairs of sensors, the range differences (RDs) are available and it becomes possible to compute the emitter location. Traditionally geometric solutions have been based on intersections of hyperbolic lines of position (LOPs). Each measured TDOA provides one hyperbolic LOP. In the absence of measurement noise, the RDs taken around any closed circuit of sensors add to zero. A bivector is introduced from exterior algebra such that when noise is present, the measured bivector of RDs is generally infeasible in that there does not correspond any actual emitter position exhibiting them. A circuital sum trivector is also introduced to represent the infeasibility; a null trivector implies a feasible RD bivector. A 2-step RD Emitter Location algorithm is proposed which exploits this implicit structure. Given the observed noisy RD bivector Δ, (1) calculate the nearest feasible RD bivector Δˆ, and (2) calculate the nearest point to the ( 3 n) planes of position, one for each of the triads of elements of Δˆ. Both algorithmic steps are least squares (LS) and finite. Numerical comparisons in simulation show a substantial improvement in location error variances.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:32 ,  Issue: 1 )

Date of Publication:

Jan. 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.