By Topic

Novel Concept of Microwave MEMS Reconfigurable 7X45° Multi-Stage Dielectric-Block Phase Shifter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Somjit, N. ; Microsyst. Technol. Lab., KTH-R. Inst. of Technol., Stockholm ; Stemme, G. ; Oberhammer, J.

A novel concept of ultra-broadband multi-stage digital-type microwave MEMS phase shifters with the best performance optimized for W-band applications is introduced in this paper. The relative phase shift of 45deg of a single stage is achieved by vertically moving a lambda/2-long high-resistivity silicon dielectric block above a 3D micromachined coplanar waveguide (3D CPW) by electrostatic actuation, resulting in different propagation constants of the microwave signal for the up-state and the down-state. For full 360deg phase-shift capability, seven stages are cascaded. The devices are fabricated and assembled by wafer-scale processes using bulk and surface micromachining. The measurement results of the first prototypes show that the W-band return and insertion loss of a single 45deg stage is better than -15 dB and -1.7 dB, respectively, while the 7-stage phase shifter has a return loss better than -12 dB with an insertion loss less than -4 dB. The phase shifters also perform well from 1-110 GHz with the return loss better than -10 dB, an insertion loss of less than -1.5 dB and a fairly linear phase-shift over the whole frequency range and the actuation voltage is 30 V. To the knowledge of the authors this phase shifter is better than all previous works in term of insertion loss, return loss and phase shift per losses (deg/dB) from 70-100 GHz.

Published in:

Micro Electro Mechanical Systems, 2009. MEMS 2009. IEEE 22nd International Conference on

Date of Conference:

25-29 Jan. 2009