Cart (Loading....) | Create Account
Close category search window
 

Autocorrelation-Based Decentralized Sequential Detection of OFDM Signals in Cognitive Radios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chaudhari, S. ; Dept. of Signal Process. & Acoust., Helsinki Univ. of Technol., Helsinki ; Koivunen, V. ; Poor, H.V.

This paper introduces a simple and computationally efficient spectrum sensing scheme for Orthogonal Frequency Division Multiplexing (OFDM) based primary user signal using its autocorrelation coefficient. Further, it is shown that the log likelihood ratio test (LLRT) statistic is the maximum likelihood estimate of the autocorrelation coefficient in the low signal-to-noise ratio (SNR) regime. Performance of the local detector is studied for the additive white Gaussian noise (AWGN) and multipath channels using theoretical analysis. Obtained results are verified in simulation. The performance of the local detector in the face of shadowing is studied by simulations. A sequential detection (SD) scheme where many secondary users cooperate to detect the same primary user is proposed. User cooperation provides diversity gains as well as facilitates using simpler local detectors. The sequential detection reduces the delay and the amount of data needed in identification of the underutilized spectrum. The decision statistics from individual detectors are combined at the fusion center (FC). The statistical properties of the decision statistics are established. The performance of the scheme is studied through theory and validated by simulations. A comparison of the SD scheme with the Neyman-Pearson fixed sample size (FSS) test for the same false alarm and missed detection probabilities is also carried out.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 7 )

Date of Publication:

July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.