By Topic

Analysis and Design of Voltage-Controlled Oscillator Based Analog-to-Digital Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jaewook Kim ; Nano-SoC center, Daejeon, South Korea ; Tae-Kwang Jang ; Young-Gyu Yoon ; SeongHwan Cho

A voltage-controlled oscillator (VCO) based analog-to-digital converter (ADC) is a time-based architecture with a first-order noise-shaping property, which can be implemented using a VCO and digital circuits. This paper analyzes the performance of VCO-based ADCs in the presence of nonidealities such as jitter, nonlinearity, mismatch, and the metastability of D flip-flops. Based on this analysis, design criteria for determining parameters for VCO-based ADCs are described. In addition, a digital calibration technique to enhance the spurious-free dynamic range degraded by the nonlinearity is also introduced. To verify the theoretical analysis, a prototype chip is implemented in a 0.13-??m CMOS process. With a 500-MHz sampling frequency, the prototype achieves a signal-to-noise ratio ranging from 71.8 to 21.3 dB for an input bandwidth of 100 kHz-247 MHz, while dissipating 12.6 mW and occupying an area of 0.078 mm2.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:57 ,  Issue: 1 )