By Topic

Optimally Distinguishable Distributions: a New Approach to Composite Hypothesis Testing With Applications to the Classical Linear Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Razavi, S.A. ; Dept. of Signal Process., Tampere Univ. of Technol., Tampere ; Giurcaneanu, C.D.

The newest approach to composite hypothesis testing proposed by Rissanen relies on the concept of optimally distinguishable distributions (ODD). The method is promising, but so far it has only been applied to a few simple examples. We derive the ODD detector for the classical linear model. In this framework, we provide answers to the following problems that have not been previously investigated in the literature: i) the relationship between ODD and the widely used Generalized Likelihood Ratio Test (GLRT); ii) the connection between ODD and the information theoretic criteria applied in model selection. We point out the strengths and the weaknesses of the ODD method in detecting subspace signals in broadband noise. Effects of the subspace interference are also evaluated.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 7 )