Cart (Loading....) | Create Account
Close category search window
 

Visual Servoing Path Planning via Homogeneous Forms and LMI Optimizations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chesi, G. ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong

Path planning is a useful technique for visual servoing as it allows one to take into account system constraints and achieve desired performances during the camera motion. In this paper, we propose a new framework for path planning based on the use of homogeneous forms and linear matrix inequalities (LMIs). Specifically, we introduce a general parametrization of the trajectories from the initial to the desired location based on homogeneous forms and a parameter-dependent version of the Rodrigues formula. This allows us to impose typical constraints (field of view, workspace, joint, avoidance of collision, and occlusion) via positivity conditions on suitable homogeneous forms. Then, we reformulate the problem of finding a trajectory in the 3-D space satisfying all these constraints as an LMI optimization that can handle the maximization of typical performances (e.g., visibility margin, similarity to a straight line). The planned camera path is tracked by using an image-based controller. The proposed approach is illustrated and validated through simulations and experiments.

Published in:

Robotics, IEEE Transactions on  (Volume:25 ,  Issue: 2 )

Date of Publication:

April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.