By Topic

Analysis of Defect Tolerance in Molecular Crossbar Electronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianwei Dai ; Dept. of Electr. & Comput. Eng., Univ. of Connecticut, Storrs, CT ; Lei Wang ; Faquir Jain

Molecular electronics such as silicon nanowires (NW) and carbon nanotubes (CNT) demonstrate great potential for continuing the technology advances toward future nano-computing paradigm. However, excessive defects from bottom-up stochastic assembly have emerged as a fundamental obstacle for achieving reliable computation using molecular electronics. In this paper, we present an information-theoretic approach to investigate the intrinsic relationship between defect tolerance and inherence redundancy in molecular crossbar systems. By modeling defect-prone molecular crossbars as a non-ideal information processing medium, we determine the information transfer capacity, which can be interpreted as the bound on reliability that a molecular crossbar system can achieve. The proposed method allows us to evaluate the effectiveness of redundancy-based defect tolerance in a quantitative manner. Employing this method, we derive the gap of reliability between redundancy-based defect tolerance and ideal defect-free molecular systems. We also show the implications to the related design optimization problem.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:17 ,  Issue: 4 )