Cart (Loading....) | Create Account
Close category search window
 

State-Space Quantization Design for the Suboptimal Control of Constrained Systems Using Neuromorphic Controllers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sznaier, M. ; Electrical Engineering Dept., University of Central Florida, Orlando, FI 32816 ; Sideris, A.

During the last few years there has been considerable interest in the use of trainable controllers based upon the use of neuron-like elements, with the expectation being that these controllers can be trained, with relatively little effort, to achieve good performance. However, good performance hinges on the ability of the neural net to generate a "good" control law even when the input does not belong to the training set, and it has been shown that neural-nets do not necessarily generalize well. It has been proposed that this problem can be solved by essentially quantizing the state-space and then using a neural-net to implement a table look-up procedure. However, there is little information on the effect of this quantization upon the controllability properties of the system. In this paper we address this problem by extending the theory of control of constrained systems to the case where the controls and measured states are restricted to finite or countably infinite sets. These results provide the theoretical framework for recently suggested neuromorphic controllers but they are also valuable for analyzing the controllability properties of computer-based control systems.

Published in:

American Control Conference, 1991

Date of Conference:

26-28 June 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.