By Topic

Exploiting Redundancies to Enhance Schedulability in Fault-Tolerant and Real-Time Distributed Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wei Luo ; Dept. of Inf. Syst., China Ship Dev. & Design Center, Wuhan ; Xiao Qin ; Xian-Chun Tan ; Ke Qin
more authors

In the past decades, distributed systems have been widely applied to real-time applications, most of which have fault-tolerance requirements to assure high reliability. Due to the stringent space constraints of real-time systems, the issue of schedulability becomes a major concern in the design of fault-tolerant and real-time distributed systems. Most existing real-time and fault-tolerant scheduling algorithms, which are based on the primary-backup scheme for periodic real-time tasks, introduce unnecessary redundancies by aggressively using active-backup copies. To solve this problem, we propose two novel fault-tolerant techniques, which are seamlessly integrated with fixed-priority-based scheduling algorithms. These techniques leverage redundancies to enhance schedulability in fault-tolerant and real-time distributed systems. Our fault-tolerant techniques make use of the primary-backup scheme to tolerate permanent hardware failures. The first technique (referred to as Tercos) terminates the execution of active-backup copies, when corresponding primary copies are successfully completed. Tercos is designed to reduce scheduling lengths in fault-free scenarios to enhance schedulability by virtue of executing portions of active-backup copies in passive forms. The second technique (referred to as Debus) uses a deferred-active-backup scheme to further minimize schedule lengths to improve the schedulability performance. Debus schedules active-backup copies as late as possible, while terminating active-backup copies when their primary copies are completed. Experimental results show that, compared with existing algorithms in literature, Tercos can significantly improve schedulability by up to 17.0% (with an average of 9.7%). Furthermore, empirical results reveal that Debus can enhance schedulability over Tercos by up to 12% (with an average of 7.8%).

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:39 ,  Issue: 3 )